THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics

MATH2050C Mathematical Analysis I

Tutorial 10 (April 22)

Boundedness Theorem. Let I := [a, b] be a closed bounded interval and let $f : I \to \mathbb{R}$ be a continuous function on I. Then f is bounded on I.

Extreme Value Theorem. Let I := [a,b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be a continuous function on I. Then f has an absolute maximum and an absolute minimum on I, that is, there exist $x_*, x^* \in I$ such that

$$f(x_*) \le f(x) \le f(x^*)$$
 for all $x \in I$.

Intermediate Value Theorem. Let I := [a,b] be a closed bounded interval and let $f: I \to \mathbb{R}$ be a continuous function on I. If f(a) < k < f(b) (or f(b) < k < f(a)), then there exists $c \in (a,b)$ such that f(c) = k.

Example 1. Show that the polynomial $p(x) := x^4 + 7x^3 - 9$ has at least two real roots.

Solution. Since p is continuous on [0,2] and p(0) = -9 < 0 < 63 = p(2), it follows from the Intermediate Value Theorem that $p(c_1) = 0$ for some $c_1 \in (0,2)$.

Since p is continuous on [-8,0] and p(-8) = 503 > 0 > -9 = p(0), it follows from the Intermediate Value Theorem that $p(c_2) = 0$ for some $c_2 \in (-8,0)$.

As $c_1 \neq c_2$, p has at least two real roots.

Example 2. Let $f:[0,1] \to \mathbb{R}$ be a continuous function such that f(0) = f(1). Prove that there exists a point c in $[0,\frac{1}{2}]$ such that $f(c) = f(c+\frac{1}{2})$.

Solution. Let $g(x) := f(x) - f(x + \frac{1}{2})$. Then g is a continuous function on [0, 1] such that

$$g(0) = f(0) - f(\frac{1}{2}) = f(1) - f(\frac{1}{2}) = -g(\frac{1}{2}).$$

If g(0) = 0, then simply take c = 0. Otherwise, 0 is between g(0) and $g(\frac{1}{2})$. Hence, by the Intermediate Value Theorem there exists $c \in (0, \frac{1}{2})$ such that g(c) = 0, that is

$$f(c) = f(c + \frac{1}{2}).$$

Example 3. Suppose that $f: \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to -\infty} f = 0$ and $\lim_{x \to \infty} f = 0$. Prove that f attains either a maximum or minimum on \mathbb{R} .

Solution. Case 1: If $f \equiv 0$, then f attains both a maximum and a minimum at any point.

Case 2: Suppose $f \not\equiv 0$. Then there is $x_0 \in \mathbb{R}$ such that $f(x_0) \neq 0$. WLOG, assume $f(x_0) > 0$. We will show that f attains a maximum on \mathbb{R} . Take $\varepsilon_0 = f(x_0)/2$. Since $\lim_{x \to -\infty} f = 0$ and $\lim_{x \to \infty} f = 0$, there is K > 0 such that

$$|f(x)| < \varepsilon_0$$
 whenever $|x| > K$.

Let $K' = \max\{K, |x_0|\}$. Since f is continuous on [-K', K'], it follows from the Extreme Value Theorem that there exist $x_*, x^* \in [-K', K']$ such that

$$f(x_*) \le f(x) \le f(x^*)$$
 for all $x \in [-K', K']$.

Moreover, if |x| > K', then

$$f(x) < \varepsilon_0 < f(x_0) \le f(x^*).$$

Combining the inequalities, we have $f(x) \leq f(x^*)$ for all $x \in \mathbb{R}$. Hence f attains a maximum on \mathbb{R} .

Classwork

1. Let $f: [0,1] \to [0,1]$ be a continuous function. Show that there exists some $x_0 \in [0,1]$ such that $f(x_0) = x_0$.

Solution. Let g(x) = f(x) - x. Then g is a continuous function on [0,1]. Moreover $g(0) = f(0) - 0 \ge 0 - 0 = 0$ and $g(1) = f(1) - 1 \le 1 - 1 = 0$.

If g(0) = 0 (or g(1) = 0), then take $x_0 = 0$ (or $x_0 = 1$).

If g(1) < 0 < g(0), then the Intermediate Value Theorem implies that there is $x_0 \in (0,1)$ such that $g(x_0) = 0$.

In either case, we have $f(x_0) = x_0$.

2. Suppose that $f:[0,\infty)\to\mathbb{R}$ is continuous and that $\lim_{x\to\infty}f=0$. Prove that f is bounded.

Solution. Take $\varepsilon_0 = 1$. As $\lim_{x \to \infty} f = 0$, there is K > 0 such that

$$|f(x)| < \varepsilon_0 = 1$$
 whenever $x > K$.

Since f is continuous on [0, K], it follows from the Boundedness Theorem that there is M > 0 such that $|f(x)| \le M$ for all $x \in [0, K]$. Now f is bounded on $[0, \infty)$ because

$$|f(x)| \le M + 1$$
 for all $x \in [0, \infty)$.